You are here

Research Breakthroughs

UDN researchers led by Dr. Bellen identify a new Cdk19-mediated neurodevelopmental disorder.

Bellen lab in collaboration with the UDN find a new neurological disorder.

Chao and Bellen labs finds pathogenic variants in the EIF2Ak family of kinases associated with a novel neurodevelopmental disorder with degenerative features.

Latest research from Dr. Roy Sillitoe's laboratory has made strides understanding of how tremor — the most common movement disorder — happens, opening the possibility of novel therapies for this condition.

A study from the Bellen lab in Neuron uncovers a novel neurological disorder that is caused due to hyperactive ACOX1 and finds ways to treat this and other ACOX1-related disorder.

A study from Xue lab develops new tools to advance research in STXBP1 encephalopathy.

A study from Wangler lab identifies 18 genes that regulate peroxisomes and may be invovled in peroxisomal disorders.

A study published in Neuron from Dr. Zhandong Liu's lab provides statistical evidence that refutes the link between increased levels of herpes virus infections and Alzheimer's disease. Moreover, the study provides a framework and guidelines for big data analysis.

A study from the Wangler lab published in Human Mutation identifies ACTG2 gene as the primary determinant of severe symptoms and worse long-term prognosis in majority of patients with visceral myopathy.

A collaborative study identifies a new neurodevelopmental syndrome due to the lysosomal dysfunction in the absence of OXR1.

Bellen lab discover that a Zika virus protein (NS4A) disrupts brain growth by hijacking the ANKLE2 and VRK1 -mediated neurogenesis pathway, which opens up the exciting possibility of developing VRK1 kinase inhibitors as therapeutic targets for microcephaly, particularly for congenital Zika syndrome.

A collaborative study from the Bellen lab finds mutations in IQSEC1 resposible for a new intellectual disability syndrome.

Researchers in Shulman and Liu labs show tau-mediated aggregates sequesters core components of the spliceosome complex leading to dgeneration and loss of neurons in the brains of Alzheimer's patients.

New study shows molecular profiling can predict the recurrence of meningiomas better than current histopathological calssifications.

A Cell paper published from the Zoghbi and Tanzi labs shows loss of ataxin-1 gene, which is known to cause the rare neurodegenerative disease called spinocerebellar ataxia type 1 (SCA1), function can increase the risk of Alzheimer’s disease in a mouse model of the condition.

Shulman et al. identify the mechanism by which mutations in CD2AP/cindr increases susceptibility to Alzheimer's disease.

UDN links WDR37 gene to a novel neurological syndrome.

Arenkiel lab has identified a novel basal forebrain circuit that controls feedling behaviors.

MOANA, a nonsurgical device capable of decoding neural activity in one person's visual cortex and recreating it another person's in one-twentieth of a second.

NRI researchers participate in an exciting DARPA-funded project.

Like finding a needle in a haystack, identifying genes that are involved in particular diseases can be an arduous and time consuming process. Looking to improve this process, a team led by researchers at Baylor College of Medicine has developed a new bioinformatics tool that analyzes CRISPR pooled screen data and identifies candidates for potentially relevant genes with greater sensitivity and accuracy than other existing methods. The new analytical web-based tool also is quicker and more user friendly as it does not require bioinformatics training to use it.